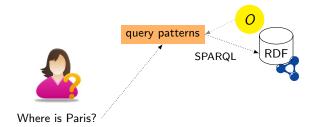
Complex Correspondences for Query Patterns Rewriting

Pascal Gillet Cássia Trojahn Ollivier Haemmerlé Camille Pradel

IRIT & Université de Toulouse 2, Toulouse, France pascalgillet@ymail.com,{cassia.trojahn,ollivier.haemmerle,camille.pradel}@irit.fr

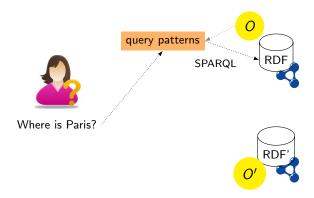
8th Ontology Matching Workshop at ISWC 2013


Context

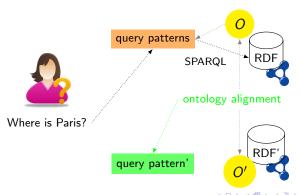
- **Foundations**
- Rewriting approach
- Experiments and discussion
- Conclusions and perspectives

- Context
- 2 Foundations
- Rewriting approach
- Experiments and discussion
- 5 Conclusions and perspectives

Context


- Hot topic in the Semantic Web community
 - translation of natural language queries into SPARQL
- Swip system [Pradel et al., 2012]
 - query pattern as a family of queries (RDF graphs)
 - pre-written patterns instantiated with respect of a syntactic analysis of the initial query

Limitation

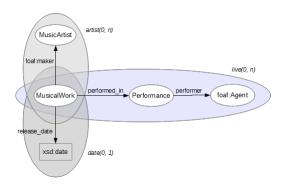

Context

- Query patterns are manually built
- Reuse of patterns across different data sets is very limited

Objective

- Use of ontology alignments for rewriting query patterns (applicative context)
- Rewriting patterns requires exploiting more expressive links between ontology entities

- Context
- 2 Foundations
- Rewriting approach
- Experiments and discussion
- 5 Conclusions and perspectives


Complex correspondences

- An alignment $A_{O \to O'}$ is a set of correspondences $\{c_1, c_2, ..., c_n\}$
 - c_i is a 4-tuple $\langle e_0, e_{0'}, r, n \rangle$
 - c_i is **simple**: $Film_O \sqsubseteq Work_{O'}$
 - c_i is complex (FOL or DL fragments)
 - $\forall x$, Short_Film(x) \equiv Film(x) \land duration(x, y) \land y < 59
 - Short_Film \equiv Film $\sqcap \exists duration. < 59$
 - $\forall x$, $Biopic(x) \equiv Film(x) \land Celebrity(y) \land topic(x, y)$
 - Biopic \equiv Film $\sqcap \exists$ topic.Celebrity

Query patterns

- RDF graph representing the prototype of a relevant family of queries
- A pattern p with respect to O is a set of sub-patterns spi

•
$$p^O = \{sp_1, sp_2, ..., sp_n\}$$

- Context
- 2 Foundations
- Rewriting approach
- Experiments and discussion
- 5 Conclusions and perspectives

Rewriting approach

```
Input: P^O = \{p_1^O, p_2^O, ..., p_n^O\},
A_{O \to O'}
Output: P^{O'} = \{p_1^{O'}, ..., p_n^{O'}\}
FRecursRewrite(sg^O, A_{O \rightarrow O'})
foreach e^O \in sg^O do
      if \exists \langle e_O, e_{O'}, r, n \rangle \in A_{O \to O'}
      then
            e_{\Omega} \leftarrow e_{\Omega'};
      else if e_O is class or property
      then
            Discard(sg^O);
            /* cascading rollback
      else
            FRecursRewrite(e_O, A_{O \rightarrow O'});
      end
end
```

- Depth-First Search algorithm (DFS) for traversing and searching graph data structures in input query patterns:
 - Subpattern ≻ RDF triple ≻ class or property
 - At each step, we search a correspondence in $A_{O \to O'}$ for the considered subgraph
- sp is an indivisible expression rewritten by chunks (if it is not fully rewritten, it is discarded)
- Conservation of semantics of P_O depends on the completeness of $A_{O \to O'}$
- Some loss of (semantic) information is acceptable (it could be overcame using other techniques i.e. user interaction)

return sg^O;

Rewriting approach

(*)

```
(*) e_i^O = MusicalWork \sqcap \exists performed\_in(Performance \sqcap \exists performer.foaf : Agent)
e_i^{O'} = MusicalWork \sqcap \exists event(MusicFestival \sqcap (\exists associatedMusicalArtist.MusicalArtist \sqcup \exists associatedBand.Band))
```

- Context
- 2 Foundations
- Rewriting approach
- Experiments and discussion
- 5 Conclusions and perspectives

Query patterns and ontologies

- MusicBrainz patterns
 - Targeting MusicBrainz collection
 - Music Ontology¹ (249 TBox entities)
 - 5 query patterns and 19 sub-patterns
- Cinema patterns
 - ABox of Cinema ontology² (300 TBox entities)
 - 6 guery patterns 27 sub-patterns
- Rewrite query patterns targeting MusicBrainz/Cinema data sets into patterns targeting DBpedia
 - DBpedia 3.8^3 ontology (2213 TBox entities)

http://musicontology.com/

² http://ontologies.alwaysdata.net/cinema

³ http://wiki.dbpedia.org/Ontology?v=181z

Preliminary experiments: MusicBrainz to DBpedia

- Simple correspondences for rewriting patterns
- Alignments (merge) from a sub-set of OAEI 2012 matching systems
- 67% of Music ontology entities were covered in the alignment
- 25 out of 60 entities in the query patterns replaced by a target entity (coverage of 41%)
- Only 2 sub-patterns out of the 19 sub-patterns could be fully rewritten
- Complex correspondences are needed instead

Complex correspondences: MusicBrainz to DBpedia

- Very few systems able to generate complex correspondences
 - Tools described in [Ritze et al., 2009, Ritze et al., 2010]
 - Set of pre-defined complex correspondence patterns
 - Few complex correspondences were identified for the pair Music-DBpedia
- Manually created set of 28 complex correspondences
 - process guided by the query sub-patterns for Music
 - take into account a set of 11 simple correspondences
 - do not cover all possible correspondences
- 52 multilingual complex correspondences for Cinema-Music (not fully evaluated)

Complex correspondences: MusicBrainz to DBpedia

- Correspondence pattern identified for each generated correspondence
- Patterns: CAT, CAT-1, CAV, PC, IP [Ritze et al., 2009] and AVR (CAV), OR, AND [Scharffe and Fensel, 2008]
- Correspondences as compositions of patterns

	#1	CAV (Class by Attribute Value)	
		$Musical Manifestation \sqcap \exists release_type.album \equiv Album$	
ſ	#3	CAV CAT : Class by Attribute Type)]
		MusicalManifestation □ ∃release_type.live ⊑	ı
		MusicalWork □ ∃recordedIn.PopulatedPlace	
Ī	#4	CAV + CAT □ CAT	1
		MusicalManifestation $\sqcap \exists release_type.soundtrack \sqcap \exists composer.foaf:Agent \sqsupset$	ı
		Film □ ∃musicComposer.MusicalArtist	ı

Rewriting SPARQL queries: MusicBrainz to DBpedia

- 28 complex correspondences (+11 simple) used for SPARQL rewriting
- SPARQL queries from the benchmark training data in QALD 2013⁴
- 25 (out of 100) SPARQL queries from QALD 2013 were rewritten
 - 18 out of 25 queries are correct and *consistent*: they do not necessarily give the same results, but they do answer the same question
 - 3 of these 18 results give the same number of solutions with exactly the same literals
 - 5 out of the 7 remaining results give no solution at all (no instance)
 - 2 last results are not fully correct since the complex correspondences ahead are not correct themselves

⁴Open challenge on Multilingual Question Answering over Linked Data

Rewriting SPARQL queries: MusicBrainz to DBpedia

"Are there members of the Ramones who are not named Ramone?" (question #25) over MusicBrainz

```
ASK
                                             ASK
                                             WHERE {
WHERE {
?band foaf:name 'Ramones' .
                                             ?band foaf:name 'Ramones'@en .
?artist foaf:name ?artistname .
                                             ?artist foaf:name ?artistname .
                                             {?band dbo:bandMember ?artist}
?artist mo:member of ?band
                                             UNION
                                             {?band dbo:formerBandMember ?artist} .
                                             FILTER (NOT regex(?artistname, "Ramone"))
FILTER (NOT regex(?artistname, "Ramone"))
```

Rewriting query patterns

- Music query patterns rewritten in terms of the DBpedia vocabulary
- Rewriting percentage of 90% of the Music patterns
 - 17 (out of 19) sub-patterns were rewriting
 - 45 (out of 51) sub-patterns from the Cinema patterns
 - Rewritten patterns were injected in the Swip system along the DBpedia data set
 - 5 queries from QALD and originally intended to MusicBrainz were run
 - Generated SPARQL queries are (semantically) correct as long as
 - correspondences do not apply any disjunction of terms (not currently supported in Swip)
 - source and target in the correspondences involved have the same information level (basically, equivalence)

- Context
- 2 Foundations
- Rewriting approach
- Experiments and discussion
- **5** Conclusions and perspectives

Conclusions and perspectives

- Reuse of query patterns via ontology alignment
- Rewritten patterns not fully validated (non-support of disjunctions by Swip)
- Approach validated on manually generated complex correspondences
- In the future :
 - propose an approach for complex correspondence generation (nowadays, few systems able to do that)
 - evolve the structure of query patterns in Swip
 - formalise the composition of complex correspondence patterns
 - use EDOAL for representing complex correspondences

References

Pradel, C., Haemmerlé, O., and Hernandez, N. (2012).

A Semantic Web Interface Using Patterns: The SWIP System.

In Graph Structures for Knowledge Representation and Reasoning, LNCS, pages 172–187. Springer Berlin Heidelberg.

Ritze, D., Meilicke, C., Sváb-Zamazal, O., and Stuckenschmidt, H. (2009). A pattern-based ontology matching approach for detecting complex correspondences. In 4th Workshop on Ontology Matching.

Ritze, D., Völker, J., Meilicke, C., and Sváb-Zamazal, O. (2010). Linguistic analysis for complex ontology matching. In 5th Workshop on Ontology Matching.

Scharffe, F. and Fensel, D. (2008).

Correspondence patterns for ontology alignment.

In Knowledge Engineering: Practice and Patterns, pages 83-92. Springer.